Author Archives: Danny

About Danny

Physics educator and researcher. @danny_doucette

Urination and Physics

The Times Education Supplement [TES] is known as a fairly conservative British publication, focusing on policy news, endorsements of the teaching profession, and op-eds by teachers. So it was surprising to see a click-bait headline relating to physics education research: “Taking the pee out of physics: How boys are getting a leg-up“. Unlike many submitted posts, this one is not identified as being written by a blogger, and comments are disabled — we are intended to treat this as real research news.

The crux of the argument is this: we have a gender gap in physics scores on standardized assessments. That gap seems to be most pronounced on tasks involving 2-dimensional motion. One explanation for the discrepancy is that boys have more experience with balls, rockets, cannons, and so forth because of the social conditioning they experience as children. However, the authors note that female students in the “ultra-masculine environment” of a military school show the same gender gap. Thus, they conclude that ball sports and play-acting war isn’t the factor. Instead, they propose that boys playfully urinate, and thus have experience with projectile motion in a way that girls don’t.

There is a lot about the article that is objectionable.

1. This article isn’t based on published scientific work, it doesn’t refer to a submitted manuscript, and the authors don’t have any related publications in the literature. This isn’t an idea that has been vetted by peer review. More importantly, it isn’t a mature scientific idea: the authors have proposed a hypothesis, but haven’t actually carried out the experiment.

It would be easy to test: survey men about their childhood urination habits, and about their proficiency with physics. Maybe throw a tricky physics problem at them, too. But the authors didn’t do this, preferring to write about the idea as if it were too obvious to need verification. This sort of speculative science is problematic, and popularizing ideas that haven’t been vetted empirically has been problematic in physics in recent years. It is particularly bad in the field of physics education research, which is struggling to be recognized as proper science by a dubious physics community.

2. Since the authors didn’t conduct a study, I did. I asked 25 people (THANK YOU!!) to answer four questions: were they sports fans as children, did they playfully urinate as children, and were they good at physics in school? I also asked them which angle would optimize the range of a projectile in the real-world case where air friction cannot be neglected — someone familiar with projectile motion either experimentally or theoretically should know that slightly decreasing the angle from 45 degrees (the theoretical optimum) will increase the range when air friction is considered.

The results of the survey show that neither urination nor sports were strong predictors for physics ability. The strongest relationship was between sports and success on the physics problem, but this did not reach an adequate level of confidence*. In short, had the authors actually tested their hypothesis, they would have found it incorrect.

3. The language used in the article makes it clear that this is click-bait rather than a serious attempt to introduce a new idea. Consider the following lines: “those sparkling arcs of urine”, “pee-based-game-playing”, and “…despite the surface layer of toilet humour, and the implication that physics may be little more than a pissing contest, we’re making a serious point.”

Unfortunately, with phrasing like that, the authors are not.

4. Another point is made by Brett Hall: projectile motion isn’t a topic that occurs at the start of the curriculum, yet the gender gap is apparent from early in the physics course. Likewise, the authors suggest focusing on energy conservation first, rather than projectile motion, but this is something that is already done in many classrooms.

5. Research by Zahra Hazari and others points to socio-cultural factors (identity,  home and school support) being the most relevant to explain why girls opt out of physics. I wouldn’t argue that the gender gap is an understood problem, but the authors present it as wholly-unsolved (perhaps to increase the audience’s willingness to accept their unorthodox idea) when it isn’t.

6. [addition 18 September] On further reflection, it is more clear to me that the phrasing and positioning of this idea to be damaging and troublesome, in addition to being incorrect and click-bait. A phrase like “why don’t young women perform as well in physics?” presupposes that the cause is a deficiency in the women, rather than the sexist culture in which they are raised and on whose assessments they are being found wanting. I hope no teenage girl hears of this incorrect hypothesis, reads this article, or absorbs the various ripples it is making in the news media.

Lastly, a note about ad hominem rebuttals. I think that most men would look at this idea and disagree because of their personal experience. I’ve seen some rejection of this hypothesis because the primary and secondary authors are female. However, there is value in the perspective of an outsider: we do a lot of things unconsciously, and only an external viewer would be able to make connections we might otherwise miss. Dismissing this work about male urination because the authors are female is incorrect.

I think that’s about all I want to say about this idea. Hopefully we can forget it now.

* The n=24 study I did was enough to show that the urination=physics ability hypothesis cannot be the primary explanation for the gender gap. However, it is possible that there is still a small correlation. As pointed out by Steve Zagieboylo, however, this pathway likely goes boy-sports-physics rather than boy-urination-physics, given the strong social differentiation that boys face. The results from my study suggest this but, since the effect is smaller, I cannot claim to have discovered anything with the small sample I used.


Grouped, Practical Assessments

I’ve been working through some ideas about assessment in high school physics. The goal is to assess students in a way that is more meaningful, more engaging, more effective at analyzing a student’s ability to do real physics tasks, and more likely to result in useful learning experiences. At the same time, with my IB classes, I cannot take my eye off the inevitability of high-stakes standardized exams and the concomitant need to prepare students for these.

I’ve been curious about authentic assessment for a while, but this specific work is inspired by Joss Ives‘s work on two-stage collaborative exams and by conversations and collaboration with Kelly O’Shea, with whom I will be presenting a workshop on the topic this summer.

In this post, I will outline and analyze one assessment I have attempted.

First, the students worked in groups to build background by creating some review notes about double-slit interference, which was the topic of this assessment. I encouraged them to “use their resources”, which in most cases meant their notes and the textbook, although a couple also used the internet for translations and definitions. Below is the prompt and a typical response.

Next, I regrouped the students (always groups of 3) and gave them their tools: a laser, a double-slit slide, a ruler, and a tape measure. I told them that their task was to determine the wavelength of the laser. Here, there was a couple minutes of uncertainty: one group launched into a debate about whether the laser was emitting light, another forgot about their notes from a minute before and tried thinking of ways to measure the laser’s frequency (planning to use the wave equation). Without nudges or hints, however, all the groups converged on the same idea: shine the laser through the double slits onto a distant wall, and measure the various distances. Below is a typical example of their work.


Finally, I asked the students to reflect on their experience. The first question aims to get them to think about their role in the group. Most of the answers here were descriptive (“I held the laser”), and few tackled the second part meaningfully. The second question aims to get them to reflect on their experimental design. The majority discussed something related to random error and the need for repeated trials.

The third question is inspired by something inspired by Ilana Horn and aped from Kelly: different ways of “being smart” or “doing science” in our class. Here are the results:

I like the diversity of approaches that were used, and that are sought. Working systematically seems to have been viewed by most of the students as key in this assessment, which is something I agree with.

Finally, is the question of whether the students preferred this type of assessment to a traditional test. Overwhelmingly, they preferred this grouped, practical approach. Even the disadvantages they suggested were quite positive. Here are some of the responses:

The educational idea of authentic assessments dates back at least to the 1990s, and of course the theory-vs-practical debate in science education predates the work of the Committee of Ten who laid the foundation for public education in the USA back in the 1890s. For me, the challenge is finding a way to do meaningful, practical assessment in a way that upholds the rigor of our contemporary courses while also being more engaging and meaningful for students.

If this is of interest to you, then please check out Kelly’s blog post and stay tuned for our workshop this summer. I’d also appreciate hearing about any ideas, feedback, or experience if you have a story to tell.

Studying StudyIB

The wonderful Chris Hamper has been working on a new educational idea over the last year. Housed on StudyIB, the Virtual Tutor is an attempt to recreate the experience of working one-on-one with a tutor as you go through a multi-step physics problem. There is a network that draws in resources and reminders for students, depending on their progress. It’s a good idea and, with the current web technologies available, just about due. Here is a video where Chris explains how the Virtual Tutor works.

Screen Shot 2017-03-12 at 2.37.39 PM

I introduced the Virtual Tutor to my students as a way to study for their IBDP Physics exams. The response was generally along the lines of “this is interesting”. However, it wasn’t clear whether or not this approach was effective, so my students and I devised a small study to try to answer that question.

First, the students wrote a pre-test on a particular topic. Second, they worked through one of the learning networks on the Virtual Tutor (we did Forces 3). Third, they wrote a post-test on the same topic (but with slightly different questions). The pre- and post-tests have three questions.

The first question is about something we have practiced extensively, and that they should know how to do: drawing a free-body diagram. The average pre-test score was 2.45 (out of 3), and the post-test score was an increase by 0.27 points. This corresponds to a small number of students forgetting or misdrawing one of their force vectors. It seems that the Virtual Tutor was an adequate reminder. Below is a sample or pre- and post-test work that shows this.

20170312_140229-800x450 20170312_140237-800x450

The second question is about something we have not practiced very much: drawing force diagrams, where the forces are drawn at the place where they originate, rather than applied to a hypothetical center of mass. Here, the Virtual Tutor helped some students (as shown in the pre/post examples below), while two students had a lower score on the post-test for this question. The overall effect was an increase of 0.46 points to 1.37 (out of 3).

20170312_140208-800x450 20170312_140215-800x450

The third pre/post question is something more akin to what the students saw on the Virtual Tutor: a standard physics problem where students need to move through several steps, doing mathematics, in order to find a numerical answer. This is the type of question the Virtual Tutor was designed for, and here it was most effective: the average student score increased from 1.00 (out of 4) to 2.82. The below work is typical: a student was able to start the problem, but got “stuck”: the Virtual Tutor reminded or taught him the necessary steps for this type of problem, and he was able to transfer that knowledge and finish the problem.

20170312_140128-800x450 20170312_140141-800x450

I will follow-up with my students after their mock exams next week, to see if and to what extent they found the Virtual Tutor useful. From this small study, however, a few conclusions emerge:

  1. The Virtual Tutor probably does about as well as any sort of studying for reminding students about fundamentals that they already know.
  2. The Virtual Tutor isn’t particularly effective as an expository tool. If students need to learn some new ideas or facts, their textbooks, videos, or classroom learning experiences are better (I should add that the rest of the StudyIB site is quite good for this).
  3. The Virtual Tutor is effective at reminding students of the difficult, complicated processes involved in solving multi-step problems. As seen on the third question of this study, one session with the virtual tutor was sufficient to get about half the students in this study from a low score to a high score on the problem.

I’m pretty impressed with the Virtual Tutors. If you’re a physics student reviewing for exams, consider giving it a try.

Here’s the (averaged) data:

Screen Shot 2017-03-12 at 2.44.02 PM

Enculturation and Acculturation

I’ve been writing my M.A. thesis over the past couple months, and have been thinking a lot about the role of culture in how students learn, how teachers teach, and how we prepare students for the world.

Aikenhead distinguishes between Assimilation, Enculturation, and Autonomous Acculturation. These three approaches toward education, with a focus on cultures, need to be distinguished and understood.

Assimilation is forcing a new a culture onto a student whose worldview diverges from that of the culture. This is what was being done at Canada’s residential schools.

Enculturation is an attempt to bring students into a new divergent culture. This is what universities do for science students.

Autonomous Acculturation is finding ways for students to adopt a new culture under their own power. This would be like lending a student a popular science book.

Softer approaches are labeled “anthropological”, and are akin to taking a trip to the zoo. The teacher might say, “this is how scientists work”, and the students learn about scientific culture, rather than being turned into scientists.

The chess videos of Ben Finegold are a great example of enculturation. GM Finegold identifies heroes (Morphy, Carlsen), trades in quips (“never play G3”, “put it in H”), establishes values for the community (high ELO ratings, clever play), and relates the mythology of the field. The people who attend the lectures, or watch online, are submitting themselves to the enculturation provided by GM Finegold, and thus adopting the culture of chess as their own. There is little doubt that the children who attend his class (like the ubiquitous Arjen) see themselves as chess players, idolize chess grandmasters, and trade in the culture of chess.

What I am seeking to understand is how society should bring children into the culture of science. In the former Soviet Union, children went to schools that placed great emphasis on maths and the sciences: students who did well won prizes, and could be assured of successful careers within the Soviet technocratic apparatus. This is enculturation, as part of mainstream education, starting from young ages.

In the West, students who develop a love of science generally do it outside of their classes — through extracurricular activities, through popular science books and websites, or because of teachers who inspired them to continue thinking about science outside of school. This view helps to explain some of the continued disproportional representation of students from poor school districts, in spite of efforts to ensure high-quality classes for these students. These students, because of their socio-economic situations, and because of a lack of extracurricular programmes through which they can autonomously acculturate themselves to science, are less likely to adopt the culture of science as their own before the critical point of applying to university.

My question, then, is what role schools should play in connecting students with the culture(s) of science (and other cultures, like the humanities, arts, and trades). I think schools should teach using an anthropological approach, and provide plentiful opportunities for students to autonomously acculturate themselves during the course of their education. It is too much to ask that students jump wholeheartedly into a new culture every 45 minutes, but visiting new exhibits in a cultural zoo, followed by some time for students to deeply acculturate themselves via projects, and under the supervision of a cultural transmitter like Ben Finegold — now, that would be great.

AAPTsm16 Reflections

After tweeting incessantly for the past six days, it’s time to reflect on the 2016 summer meeting of the AAPT. I saw a few themes emerge from the research and work that was being presented, but some important ideas also presented themselves through the structure of the meeting itself. What follows are just the opinions of a myopic, unread teacher.

Social Justice. On the final day of the PERC, symposiarches Moses Rifkin and Amy Robertson kicked off a discussion about social justice by asking the audience to define what the term meant in physics education. This was surprisingly difficult: is it levelling the playing field? it is educating students about inequality? are we talking about social reconstruction? In any case, we used a lot of different words through the conference(s) to talk about how we physics educators can address injustice. Geraldine Cochran called for us to think of education debt, rather than achievement gaps: I hope that is the language and mindset we adopt going forward.

There were multiple sessions and workshops that aimed to address issues of equity, including two that were unfortunately scheduled at the same time. The highlight, I think, was a session organized by Mel Sabella that included complementary and interwoven talks by Konstantinos Alexakos about safe spaces, by Ximena Cid about poor targeting of PER studies, and by Geraldine Cochran challenging the deficit model and proposing the debt concept mentioned above. Hearteningly, the scheduled 30-minute discussion session turned into a 90-minute huddle. There was a spirit of passion and community present that I have never seen before at AAPT.


Session DD morphed into this discussion that carried on for an hour past the scheduled end

That final session at PERC was a good conclusion for those who were present, I think, because it resulted in the production of some documents, and a call to action. I am looking forward to a round of “this is what I tried” posters at the meeting next year.

Gender. In the past, the discussion about gender has centred on the gender gap, with plenty of work showing that it exists, and some insightful research trying to understand the origins. To an extent, that continued this year, such as Melissa Dancy’s excellent work, below.


Melissa Dancy shows that female students who leave physics (yellow) are more likely to prefer interactive classes, but were also more likely to have experienced only lectures

However, given the relative power of white female physicists, it seems as if gender issues might be subsumed into the broader struggle for social justice. To be clear, I am not saying that the gender issues have been resolved, even theoretically; however, I think many people have started to view gender as a small piece of a bigger issue. Identity is a part of that big issue, and Katherine Rainey’s work — which is probably on the leading edge at the moment — shows the importance of developing a sense of belonging.

Progressive Policies. We saw a number of advances this year by the AAPT, including the adoption of a code of conduct, the establishment of gender-neutral bathrooms, and the creation of child care grants. These should be understood as commendable first steps, and I understand there is a proposal to extend the child care grants to include caregivers more generally, and several other positive steps.

I think the real benefit of the AAPT making these important and symbolic gestures is that it tells the members that this meeting was a safe space, where everyone is valued. Especially for those of us who work at markedly less-progressive institutions, that support is valuable and heartening.

I saw two key areas in which I would like to improve the accessibility of the conference. First, I saw that many people stayed in the youth hostel, about 5 blocks from the convention centre. The price of USD 37 per night for a dorm bed is markedly better than the rates for the suggested hotels (USD 99 and up). The popularity of this option, especially for visitors from abroad (like me), for high school teachers, and for those attending the conference out-of-pocket, suggests that the AAPT should think carefully about providing affordable options in the conference planning. Cincinnati doesn’t have a youth hostel, and I haven’t been able to find cheap accommodation in the downtown.

Second, the child care grants are nice, but not a complete solution given the difficulty of finding care locally, and the cost of bringing along a caregiver on a cross-country flight. Instead, I think we could come up with a child-minding option that (a) make the conference more friendly for families, and (b) bring some more joy and life to the conference for the rest of us. I understand there might be insurance issues in such a case.

Spaces. Interpreted both physically (ie: classrooms) and more broadly (ie: the learning context), the concept of students’ learning spaces arose several times. For one, we need to provide spaces free of gendered or racial cuing. The spaces also need to be designed to be comfortable for students. There is the question of how to establish safe spaces. And there is also the matter of the analysis of spaces, as a way to examine non-content learning.

Standard Problems Suck. Steve Kanim spoke at the Physics Teacher Camp about the role of math and problem-solving in physics. The slide speaks volumes. Kanim’s solution is the TIPERs, and he generously arranged for a book of these for all the attendees.

On the other side of the conference, Beth Thacker reported on traditional learning and problems in unequivocal language.


High School. The AAPT didn’t promote the excellent physics teachers camp as widely this year, unfortunately, and I met several high school teachers at the AAPT that didn’t know about it (and likely would have attended if they had). It is a wonderful initiative, and certainly the best PD available for teachers like me.

Sadly, high school teachers seem to be fading from the scene. I saw fewer neat-teaching-idea talks than ever before, as the PER tradition continues to dominate the sessions. Steve Nixon’s talk about strategies in high-needs classrooms was a particularly effective exception.

Competition. A few speakers extolled the virtues of competition in the classroom, but I didn’t hear the counter-arguments anywhere. I’m not sure what to make of that.

Accelerometers Everywhere. Rebecca Vieyra was on hand to show us more of the Physics Toolbox, and Colleen Countryman had a poster about MyTECH. Lab4u had a booth in the exhibition hall demonstrating something similar. UIUC debuted a device called the IOLab that holds sensors and communicates wirelessly with a USB stick. PASCO’s new Smart Cart was a hit, too. I think accelerometers and other smartphone-based sensors have hit the mainstream now. Surprisingly, I didn’t hear anything about Google’s new offering, Science Journal.

Other educational technology seems not to have caught on quite as well: many people professed ignorance of Desmos and I didn’t see even a single presentation or poster about PhET.

Labwork. At the end of the PERC, the audience was asked to suggest growth areas for the community. Saalih Allie (actually on the panel) suggested that lab work, more complex than theoretical physics, deserves attention in the future. Perhaps, after last year’s focus during PERC, the AAPT community decided to give the study of practical skills a rest.


Two Submission Types. Perhaps I am becoming cynical, but I found that most of the posters I saw fit into one of two categories: (a) those that attempted to document some sort of project that was undertaken, but don’t generate many take-aways, and (b) those that address questions that could be answered in a single sentence, but don’t actually say that conclusion clearly. I think the history of PER comes from the desire to improve the physics 101 course, but just as we’ve moved on from that target, it’s also time to move on from that methodology.

Demos. Physicists still like demos. This lecture hall had a rotating stage, to allow for twice as many to be set up!

In my recent TEDxRiga talk, I called demos “snake oil”, unless they are being used carefully to provoke curiosity and engagement. I think we risk being too enamoured with the big booms (apparently there were some of these at the PASCO picnic!) and lose sight of the fact that students need active engagement in order to develop understanding.

Dianna Cowern (Physics Girl) gave a talk about demos. Her view is that they stimulate curiosity, which is what she aims to do with her channel.

IB and AP and A-levels. I attended a session on three college-at-high-school curricula. It seems that all three have gravitated toward the same curriculum and assessment model, with subtle distinctions (although it is unclear the IB and A-levels were ever very different). Of the three, the AP is the more progressive, with the recent revision sacrificing breadth for depth, and resulting in an unpopular drop in grades at many schools as the exams stiffened up.

I think that all three programmes suffer from a lack of transparency in how they design their curricula, and in how they design and implement their assessments. The assessments all attempt to go slightly beyond standard problems, but are nonetheless comprised primarily of the same. The AP does better than the others here, too, having documented much of their revision, and releasing the free-response portions of the exams. I saw that Boston University is doing a program that brings AP physics to students in schools that don’t offer it, by blending online learning with a weekly on-campus session.

Physics or Physics Education? I missed much of this discussion, but gather that there have been some existential questions raised about PER. Essentially, I think, is the question of whether the techniques of physics research are going to provide much more insight into physics education, or whether we need to turn fully to the learning sciences in order to make progress.

Saalih Allie advocated for “humble theories”, which need not attempt to describe phenomena fully, but nonetheless provide contextual insight and can be pulled together to make a patchwork understanding at some point in the future, if needed. This is probably a reasonable stance to promote, given (a) the physicist’s obsession with finding fundamental truths, and (b) the complete lack of anything like absolute truth in the social sciences.

Culture. I talked briefly about border-crossing, but I don’t think the cultural dimension is on many people’s minds right now.

Community. In a broad sense, the community of the AAPT gives me faith in the power of human institutions to come together and make progress in our field. At the same time, I felt like the PER community was missing some faces this year, Joe Redish among them. Perhaps we are witnessing the changing of the guard, and will see the emergence of leaders for the second generation of PER over the coming years.

I think the most valuable thing the AAPT does is provide a community for its members. I am over the moon to have had the opportunity to spend time with people I deeply respect and admire, and I cannot wait to continue that conversation online over the coming months.

Latvian Physics Exam

Today was the pilot administration of Latvia’s new 12th-grade physics exam. Next year, students will be required to write either the physics or the chemistry exam as part of their secondary school leaving requirements (for those students who pursue the academic track of studies). In this post, I will take a close look at the exemplar, which can be found (in Latvian) here.


Part 1.1 (multiple choice): Assumptions and Memory

The exam opens with a question about the applicability of the accelerated motion model. It’s a promising sign, but all of the answers — a launched javelin, a parachutist in the first minute of fall, a person in an elevator, and a hammer dropped on the moon — are possible, and the question is really about the degree to which the model can be applied to these situations. For example, a javelin has a very narrow cross section, so it would be reasonable to assume it experiences very little drag force. In fact, the aerodynamics of javelins are interesting, and although their motion is non-parabolic, the reasons are not obvious (an example).

The fifth question is identical to one from an IB physics exam from a couple years ago, where the motion of a piston is presumed to be uniquely responsible for the temperature increase of a compressed ideal gas. The twelfth lists four core equations about electricity and asks which explains the need for high voltage in long-distance power lines. These types of questions are frustrating because multiple answers are reasonable, and the students are forced to try to guess what the exam-writer is thinking.

Another type of question that appears is simple recall. Question 6 requires that students remember that isochoric processes have constant volume. The 13th question seems to ask that students remember how the technology of electromagnetic inductive charging works. Question 20 is about the origin of the atoms that make up our bodies.

The third type of common question is about relationships between variables. Students are expected to recall how electric fields depend on the distances from point charges, how photon energy is related to wavelength, and how the energy of photoelectrons is related to the frequency of incident light.

These multiple choice questions are pretty standard, with questions similar to IB Physics and the GRE. The difficulty level is probably appropriate, in that students will show a nice Gaussian distribution of responses. But as a tool for educational assessment, I think these multiple-choice questions have only marginal utility.

Part 1.2 (short answer): Not For The Meticulous

The second part of the exam consists of 10 short-answer questions. In reality, it is a mix of question types that is sure to frustrate students. There are 6 multiple-choice style questions where students must choose all the correct answers, 2 ranking tasks, and 2 calculations. Problematically, some of the distractor options on the multiple-choice style problems could conceivably be relevant. For example, problem 27 shows possible light paths refracting and reflecting around a glass block. A line path that is not visibly refracted by the block is possible, depending on the index of refraction (and the refraction is exaggerated compared with what would be observed in the lab).

The biggest problem with questions like this is that, while they are accessible to very weak students and straightforward to students who have a teacher’s level of understanding of physics problems, they will not be very successful at differentiating between a student who is at 90% of a robust understanding, and a student who can intelligently guess 10%.

I’m happy that the test-writers are attempting to expand beyond multiple-choice questions, but this section will be hard for the students, and will provide little feedback about students’ ability to use their physics knowledge and skills to meaningfully create knowledge.

Part 2 (long answer): Physics Problems, With a Dash of Discussion

The long-answer section begins with the ominous note that this section will involve judging pace, but with 135 minutes to solve 5-7 problems, the question likely will not be pace so much as sustained concentration.

I want to like these problems: they combine calculations (kinetic and gravitational energies for the first, circular motion for the second) with diagrams and comparison of quantities. This fixes the problem with the first half of the exam, and allows students the opportunity to explain their answers.

However, the structures for the problems seem set up to greatly restrict the students from any sort of individual actions, knowledge construction, or creativity. The first problem requires that students draw the velocity and acceleration vectors for a pendulum — something that is usually recalled, rather than figured out.

The rest of the problems mix standard physics things-that-must-be-remembered with little calculations. There is a clear effort to make the problems meaningful and/or relevant: one concludes by asking students for a conclusion about heat loss in a house, and another is about the laser on a Mars rover. However, the overwhelming sense with these questions is that of standard physics regurgitation: draw a voltage divider, calculate the diffraction angle, identify this range of the EM spectrum, etc.

The final question (at last!) asks that students work with some data, but this is an illusion: after finding the slope from a graph, it’s the same deal as before: find the efficiency of the electric kettle.

By the time you get to the end of these problems, it is clear that they are merely standard physics problems, with just a few “explain why” questions. This is better than the mechanistic rigamarole of the IB physics exams, but not by much. Even here, there is no chance for students to construct their own meaning or use genuine critical thinking, and I suspect that most students will get most of their points by reiterating standard physics solutions to these standard physics problems.


There is a suspicion that the new physics and chemistry exams are an attempt by the Ministry of Education to add more rigour to a national curriculum that has recently come under fire after Oxford University decided not to recognize the Latvian grade 12 diploma as adequate preparation for undergraduate studies. Thus, this exam will probably give universities a better way to sort students. I’ve heard that, after promising they wouldn’t be required, many universities are asking to see students’ results for this pilot year for the exam.

However, like all standardized testing of this sort, what we will primarily find is that students attending better-funded schools, in Rīga, and with higher socioeconomic class will do better on these exams. Additionally, these exams will be felt backward into the 11th grade and earlier, as physics and chemistry teachers are increasingly under pressure to prepare students for the exam, and thus are forced to sacrifice good science teaching in favour of test preparation. The quality of meaningful science education will fall, resulting in weaker critical thinking and scientific reasoning skills across society, while universities will increasingly rely on these test scores to make admissions decisions, and disadvantaged students will be left behind.

If I’m wrong about some or all of this, or if you have perspective or insight to share, please reply or email me (danny.doucette at gmail).

IB Physics vs GRE Physics

Can you tell which problem is from a test designed to assess the skills of high school students, and which problem is from a notiously difficult test used to rank applicants for graduate school?



A student needs to get 70 to 80% of these questions correct to be eligible for the top graduate schools in the USA (MIT, CalTech, Harvard, Stanford, etc). The same percentage is required to achieve a “7” (the top grade) in IB Physics.



The GRE consists of 100 of these multiple-choice problems. For IB physics, it is 30 or 40 (depending on the level) and then two more papers with longer-form questions. Students generally find the multiple choice questions easiest.



So which are IB and which are GRE questions? (hint: the GRE questions have five possible answers)